2019-12-23 - Category Six
(original .ipynb)
Day 23 puzzle input is an IntCode program (mine is here) which represents a networked computer as part of a bigger network. Part 1 involves connecting a number of these network computers, running them and finding the first packet sent to computer 255. Part 2 involves modifying the behaviour so that computer 255 does something when the network is "idle" (no packets are sent) which kicks things into action again, and finding the first y
value sent to this computer twice in a row.
opcode_add = 1 opcode_mul = 2 opcode_read = 3 opcode_write = 4 opcode_jump_true = 5 opcode_jump_false = 6 opcode_lt = 7 opcode_eq = 8 opcode_rebase = 9 opcode_terminate = 99 mode_position = 0 mode_immediate = 1 mode_relative = 2 class IntCodeCpu: def __init__(self, memory_image): self.memory = [ x for x in memory_image ] # copy memory image, in case it's reused self.stalled = True self.input_buffer = None self.output_buffer = None self.pc = 0 self.initialise_opcodes() self.offset = 0 self.done = False def start(self, input_buffer, output_buffer, noun=None, verb=None): self.input_buffer = input_buffer self.output_buffer = output_buffer if noun: self.memory[1] = noun if verb: self.memory[2] = verb return self.run() def run(self): instr = self.memory[self.pc] self.stalled = False while int(instr) != opcode_terminate and not self.stalled: (op, modes) = self.decode_instr(instr) self.pc = op(modes) instr = self.memory[self.pc] return self.memory[0] #-HELPERS----------------------------- def try_pop_mode(self, modes): if len(modes) == 0: return 0 return modes.pop() def resize_memory(self, target_addr): self.memory += ([0] * (1 + target_addr - len(self.memory))) #-DECODE-INSTRUCTIONS----------------- def initialise_opcodes(self): self.opcodes = { opcode_add: self.op_add, opcode_mul: self.op_mul, opcode_read: self.op_read, opcode_write: self.op_write, opcode_jump_true: self.op_jump_true, opcode_jump_false: self.op_jump_false, opcode_lt: self.op_lt, opcode_eq: self.op_eq, opcode_rebase: self.op_rebase } def decode_instr(self, instr): instr = str(instr) opcode = self.decode_op(instr) modes = self.decode_modes(instr) if not (opcode in self.opcodes): raise Exception(f"Invalid opcode {opcode}") return (self.opcodes[opcode], modes) def decode_op(self, instr): if len(instr) > 2: return int(instr[-2:]) return int(instr) def decode_modes(self, instr): if len(instr) > 2: return [ int(d) for d in instr[:-2]] return [] #-MICRO-OPS--------------------------- def uop_read(self, value, mode): if mode == mode_position: if value >= len(self.memory): self.resize_memory(value) return int(self.memory[value]) elif mode == mode_relative: if self.offset + value >= len(self.memory): self.resize_memory(self.offset + value) return int(self.memory[self.offset + value]) elif mode == mode_immediate: return int(value) else: raise Exception("UNKNOWN MODE") def uop_write(self, dst, value, mode): if mode == mode_position: if dst >= len(self.memory): self.resize_memory(dst) self.memory[dst] = value elif mode == mode_relative: if self.offset + dst >= len(self.memory): self.resize_memory(self.offset + dst) self.memory[self.offset + dst] = value elif mode == mode_immediate: raise Exception(f"cannot write {value} to literal {dst}") def uop_cond_jump(self, modes, cond): param_mode = self.try_pop_mode(modes) param_raw = int(self.memory[self.pc + 1]) param = self.uop_read(param_raw, param_mode) dest_mode = self.try_pop_mode(modes) dest_raw = int(self.memory[self.pc + 2]) dest = self.uop_read(dest_raw, dest_mode) if cond(param): return dest return self.pc + 3 def uop_cmp(self, modes, cmp): param0_mode = self.try_pop_mode(modes) param0_raw = int(self.memory[self.pc + 1]) param0 = self.uop_read(param0_raw, param0_mode) param1_mode = self.try_pop_mode(modes) param1_raw = int(self.memory[self.pc + 2]) param1 = self.uop_read(param1_raw, param1_mode) dest_mode = self.try_pop_mode(modes) dest = int(self.memory[self.pc + 3]) if cmp(param0, param1): self.uop_write(dest, 1, dest_mode) else: self.uop_write(dest, 0, dest_mode) return self.pc + 4 #-OPCODES----------------------------- def op_add(self, modes): arg0_mode = self.try_pop_mode(modes) arg1_mode = self.try_pop_mode(modes) dest_mode = self.try_pop_mode(modes) arg0_raw = int(self.memory[self.pc + 1]) arg1_raw = int(self.memory[self.pc + 2]) dest = int(self.memory[self.pc + 3]) arg0 = self.uop_read(arg0_raw, arg0_mode) arg1 = self.uop_read(arg1_raw, arg1_mode) self.uop_write(dest, str(int(arg0) + int(arg1)), dest_mode) return self.pc + 4 def op_mul(self, modes): arg0_mode = self.try_pop_mode(modes) arg1_mode = self.try_pop_mode(modes) dest_mode = self.try_pop_mode(modes) arg0_raw = int(self.memory[self.pc + 1]) arg1_raw = int(self.memory[self.pc + 2]) dest = int(self.memory[self.pc + 3]) arg0 = self.uop_read(arg0_raw, arg0_mode) arg1 = self.uop_read(arg1_raw, arg1_mode) self.uop_write(dest, str(int(arg0) * int(arg1)), dest_mode) return self.pc + 4 def op_read(self, modes): dest_mode = self.try_pop_mode(modes) dest = int(self.memory[self.pc + 1]) # if the input buffer is empty, we should "stall" and # resume later if not self.input_buffer: self.stalled = True return self.pc val = self.input_buffer.pop() self.uop_write(dest, str(val), dest_mode) return self.pc + 2 def op_write(self, modes): src_mode = self.try_pop_mode(modes) src_raw = int(self.memory[self.pc + 1]) src = self.uop_read(src_raw, src_mode) self.output_buffer.append(src) return self.pc + 2 def op_jump_true(self, modes): return self.uop_cond_jump(modes, lambda x: x != 0) def op_jump_false(self, modes): return self.uop_cond_jump(modes, lambda x: x == 0) def op_lt(self, modes): return self.uop_cmp(modes, lambda x, y: x < y) def op_eq(self, modes): return self.uop_cmp(modes, lambda x, y: x == y) def op_rebase(self, modes): param_mode = self.try_pop_mode(modes) param_raw = int(self.memory[self.pc + 1]) param = self.uop_read(param_raw, param_mode) self.offset += param return self.pc + 2
from collections import defaultdict def network_send(net, address, packet): if address == 255: net[address] = [ packet ] else: net[address].append(packet) def network_recv(net, address): if len(net[address]) > 0: return net[address].pop(0) return [-1]
raw_code = open("puzzle_input/day23.txt", "r").read() code = raw_code.split(",") def part_one(): nodes = [ IntCodeCpu(code) for n in range(50) ] network = defaultdict(list) # init nodes for addr, node in enumerate(nodes): packet_in = [addr] packet_out = [] node.start(packet_in, packet_out) if len(packet_out) > 0: dest, x, y = output network_send(network, dest, [y, x]) while len(network[255]) == 0: for addr, node in enumerate(nodes): packet_in = network_recv(network, addr) packet_out = [] node.start(packet_in, packet_out) while len(packet_out) > 0: dest, x, y = packet_out[:3] network_send(network, dest, [y, x]) packet_out = packet_out[3:] return network[255][0][0] print(part_one())
15969
def network_idle(net): # determine if everyone's input buffer is idle (except 255 ofc) return all([ len(net[addr]) == 0 for addr in net.keys() if addr != 255 ]) def part_two(): nodes = [ IntCodeCpu(code) for n in range(50) ] network = defaultdict(list) # init nodes for addr, node in enumerate(nodes): packet_in = [addr] packet_out = [] node.start(packet_in, packet_out) if len(packet_out) > 0: dest, x, y = output network_send(network, dest, [y, x]) prev_y = None while True: for addr, node in enumerate(nodes): packet_in = network_recv(network, addr) packet_out = [] node.start(packet_in, packet_out) while len(packet_out) > 0: dest, x, y = packet_out[:3] network_send(network, dest, [y, x]) packet_out = packet_out[3:] if network_idle(network): y, x = network_recv(network, 255) if prev_y == y: return y network_send(network, 0, [y, x]) prev_y = y print(part_two())
10650