2019-12-23 - Category Six
(original .ipynb)
Day 23 puzzle input is an IntCode program (mine is here) which represents a networked computer as part of a bigger network. Part 1 involves connecting a number of these network computers, running them and finding the first packet sent to computer 255. Part 2 involves modifying the behaviour so that computer 255 does something when the network is "idle" (no packets are sent) which kicks things into action again, and finding the first y value sent to this computer twice in a row.
opcode_add = 1
opcode_mul = 2
opcode_read = 3
opcode_write = 4
opcode_jump_true = 5
opcode_jump_false = 6
opcode_lt = 7
opcode_eq = 8
opcode_rebase = 9
opcode_terminate = 99
mode_position = 0
mode_immediate = 1
mode_relative = 2
class IntCodeCpu:
def __init__(self, memory_image):
self.memory = [ x for x in memory_image ] # copy memory image, in case it's reused
self.stalled = True
self.input_buffer = None
self.output_buffer = None
self.pc = 0
self.initialise_opcodes()
self.offset = 0
self.done = False
def start(self, input_buffer, output_buffer, noun=None, verb=None):
self.input_buffer = input_buffer
self.output_buffer = output_buffer
if noun:
self.memory[1] = noun
if verb:
self.memory[2] = verb
return self.run()
def run(self):
instr = self.memory[self.pc]
self.stalled = False
while int(instr) != opcode_terminate and not self.stalled:
(op, modes) = self.decode_instr(instr)
self.pc = op(modes)
instr = self.memory[self.pc]
return self.memory[0]
#-HELPERS-----------------------------
def try_pop_mode(self, modes):
if len(modes) == 0:
return 0
return modes.pop()
def resize_memory(self, target_addr):
self.memory += ([0] * (1 + target_addr - len(self.memory)))
#-DECODE-INSTRUCTIONS-----------------
def initialise_opcodes(self):
self.opcodes = {
opcode_add: self.op_add,
opcode_mul: self.op_mul,
opcode_read: self.op_read,
opcode_write: self.op_write,
opcode_jump_true: self.op_jump_true,
opcode_jump_false: self.op_jump_false,
opcode_lt: self.op_lt,
opcode_eq: self.op_eq,
opcode_rebase: self.op_rebase
}
def decode_instr(self, instr):
instr = str(instr)
opcode = self.decode_op(instr)
modes = self.decode_modes(instr)
if not (opcode in self.opcodes):
raise Exception(f"Invalid opcode {opcode}")
return (self.opcodes[opcode], modes)
def decode_op(self, instr):
if len(instr) > 2:
return int(instr[-2:])
return int(instr)
def decode_modes(self, instr):
if len(instr) > 2:
return [ int(d) for d in instr[:-2]]
return []
#-MICRO-OPS---------------------------
def uop_read(self, value, mode):
if mode == mode_position:
if value >= len(self.memory):
self.resize_memory(value)
return int(self.memory[value])
elif mode == mode_relative:
if self.offset + value >= len(self.memory):
self.resize_memory(self.offset + value)
return int(self.memory[self.offset + value])
elif mode == mode_immediate:
return int(value)
else:
raise Exception("UNKNOWN MODE")
def uop_write(self, dst, value, mode):
if mode == mode_position:
if dst >= len(self.memory):
self.resize_memory(dst)
self.memory[dst] = value
elif mode == mode_relative:
if self.offset + dst >= len(self.memory):
self.resize_memory(self.offset + dst)
self.memory[self.offset + dst] = value
elif mode == mode_immediate:
raise Exception(f"cannot write {value} to literal {dst}")
def uop_cond_jump(self, modes, cond):
param_mode = self.try_pop_mode(modes)
param_raw = int(self.memory[self.pc + 1])
param = self.uop_read(param_raw, param_mode)
dest_mode = self.try_pop_mode(modes)
dest_raw = int(self.memory[self.pc + 2])
dest = self.uop_read(dest_raw, dest_mode)
if cond(param):
return dest
return self.pc + 3
def uop_cmp(self, modes, cmp):
param0_mode = self.try_pop_mode(modes)
param0_raw = int(self.memory[self.pc + 1])
param0 = self.uop_read(param0_raw, param0_mode)
param1_mode = self.try_pop_mode(modes)
param1_raw = int(self.memory[self.pc + 2])
param1 = self.uop_read(param1_raw, param1_mode)
dest_mode = self.try_pop_mode(modes)
dest = int(self.memory[self.pc + 3])
if cmp(param0, param1):
self.uop_write(dest, 1, dest_mode)
else:
self.uop_write(dest, 0, dest_mode)
return self.pc + 4
#-OPCODES-----------------------------
def op_add(self, modes):
arg0_mode = self.try_pop_mode(modes)
arg1_mode = self.try_pop_mode(modes)
dest_mode = self.try_pop_mode(modes)
arg0_raw = int(self.memory[self.pc + 1])
arg1_raw = int(self.memory[self.pc + 2])
dest = int(self.memory[self.pc + 3])
arg0 = self.uop_read(arg0_raw, arg0_mode)
arg1 = self.uop_read(arg1_raw, arg1_mode)
self.uop_write(dest, str(int(arg0) + int(arg1)), dest_mode)
return self.pc + 4
def op_mul(self, modes):
arg0_mode = self.try_pop_mode(modes)
arg1_mode = self.try_pop_mode(modes)
dest_mode = self.try_pop_mode(modes)
arg0_raw = int(self.memory[self.pc + 1])
arg1_raw = int(self.memory[self.pc + 2])
dest = int(self.memory[self.pc + 3])
arg0 = self.uop_read(arg0_raw, arg0_mode)
arg1 = self.uop_read(arg1_raw, arg1_mode)
self.uop_write(dest, str(int(arg0) * int(arg1)), dest_mode)
return self.pc + 4
def op_read(self, modes):
dest_mode = self.try_pop_mode(modes)
dest = int(self.memory[self.pc + 1])
# if the input buffer is empty, we should "stall" and
# resume later
if not self.input_buffer:
self.stalled = True
return self.pc
val = self.input_buffer.pop()
self.uop_write(dest, str(val), dest_mode)
return self.pc + 2
def op_write(self, modes):
src_mode = self.try_pop_mode(modes)
src_raw = int(self.memory[self.pc + 1])
src = self.uop_read(src_raw, src_mode)
self.output_buffer.append(src)
return self.pc + 2
def op_jump_true(self, modes):
return self.uop_cond_jump(modes, lambda x: x != 0)
def op_jump_false(self, modes):
return self.uop_cond_jump(modes, lambda x: x == 0)
def op_lt(self, modes):
return self.uop_cmp(modes, lambda x, y: x < y)
def op_eq(self, modes):
return self.uop_cmp(modes, lambda x, y: x == y)
def op_rebase(self, modes):
param_mode = self.try_pop_mode(modes)
param_raw = int(self.memory[self.pc + 1])
param = self.uop_read(param_raw, param_mode)
self.offset += param
return self.pc + 2
from collections import defaultdict
def network_send(net, address, packet):
if address == 255:
net[address] = [ packet ]
else:
net[address].append(packet)
def network_recv(net, address):
if len(net[address]) > 0:
return net[address].pop(0)
return [-1]
raw_code = open("puzzle_input/day23.txt", "r").read()
code = raw_code.split(",")
def part_one():
nodes = [ IntCodeCpu(code) for n in range(50) ]
network = defaultdict(list)
# init nodes
for addr, node in enumerate(nodes):
packet_in = [addr]
packet_out = []
node.start(packet_in, packet_out)
if len(packet_out) > 0:
dest, x, y = output
network_send(network, dest, [y, x])
while len(network[255]) == 0:
for addr, node in enumerate(nodes):
packet_in = network_recv(network, addr)
packet_out = []
node.start(packet_in, packet_out)
while len(packet_out) > 0:
dest, x, y = packet_out[:3]
network_send(network, dest, [y, x])
packet_out = packet_out[3:]
return network[255][0][0]
print(part_one())
15969
def network_idle(net):
# determine if everyone's input buffer is idle (except 255 ofc)
return all([
len(net[addr]) == 0 for addr in net.keys() if addr != 255
])
def part_two():
nodes = [ IntCodeCpu(code) for n in range(50) ]
network = defaultdict(list)
# init nodes
for addr, node in enumerate(nodes):
packet_in = [addr]
packet_out = []
node.start(packet_in, packet_out)
if len(packet_out) > 0:
dest, x, y = output
network_send(network, dest, [y, x])
prev_y = None
while True:
for addr, node in enumerate(nodes):
packet_in = network_recv(network, addr)
packet_out = []
node.start(packet_in, packet_out)
while len(packet_out) > 0:
dest, x, y = packet_out[:3]
network_send(network, dest, [y, x])
packet_out = packet_out[3:]
if network_idle(network):
y, x = network_recv(network, 255)
if prev_y == y:
return y
network_send(network, 0, [y, x])
prev_y = y
print(part_two())
10650