2019-12-21 - Springdroid Adventure
(original .ipynb)
Day 21 puzzle input is an IntCode program (mine is here) which represents a networked computer as part of a bigger network. Part 1 involves connecting a number of these network computers and finding the first
opcode_add = 1 opcode_mul = 2 opcode_read = 3 opcode_write = 4 opcode_jump_true = 5 opcode_jump_false = 6 opcode_lt = 7 opcode_eq = 8 opcode_rebase = 9 opcode_terminate = 99 mode_position = 0 mode_immediate = 1 mode_relative = 2 class IntCodeCpu: def __init__(self, memory_image): self.memory = [ x for x in memory_image ] # copy memory image, in case it's reused self.stalled = True self.input_buffer = None self.output_buffer = None self.pc = 0 self.initialise_opcodes() self.offset = 0 self.done = False def start(self, input_buffer, output_buffer, noun=None, verb=None): self.input_buffer = input_buffer self.output_buffer = output_buffer if noun: self.memory[1] = noun if verb: self.memory[2] = verb return self.run() def run(self): instr = self.memory[self.pc] self.stalled = False while int(instr) != opcode_terminate and not self.stalled: (op, modes) = self.decode_instr(instr) self.pc = op(modes) instr = self.memory[self.pc] return self.memory[0] #-HELPERS----------------------------- def try_pop_mode(self, modes): if len(modes) == 0: return 0 return modes.pop() def resize_memory(self, target_addr): self.memory += ([0] * (1 + target_addr - len(self.memory))) #-DECODE-INSTRUCTIONS----------------- def initialise_opcodes(self): self.opcodes = { opcode_add: self.op_add, opcode_mul: self.op_mul, opcode_read: self.op_read, opcode_write: self.op_write, opcode_jump_true: self.op_jump_true, opcode_jump_false: self.op_jump_false, opcode_lt: self.op_lt, opcode_eq: self.op_eq, opcode_rebase: self.op_rebase } def decode_instr(self, instr): instr = str(instr) opcode = self.decode_op(instr) modes = self.decode_modes(instr) if not (opcode in self.opcodes): raise Exception(f"Invalid opcode {opcode}") return (self.opcodes[opcode], modes) def decode_op(self, instr): if len(instr) > 2: return int(instr[-2:]) return int(instr) def decode_modes(self, instr): if len(instr) > 2: return [ int(d) for d in instr[:-2]] return [] #-MICRO-OPS--------------------------- def uop_read(self, value, mode): if mode == mode_position: if value >= len(self.memory): self.resize_memory(value) return int(self.memory[value]) elif mode == mode_relative: if self.offset + value >= len(self.memory): self.resize_memory(self.offset + value) return int(self.memory[self.offset + value]) elif mode == mode_immediate: return int(value) else: raise Exception("UNKNOWN MODE") def uop_write(self, dst, value, mode): if mode == mode_position: if dst >= len(self.memory): self.resize_memory(dst) self.memory[dst] = value elif mode == mode_relative: if self.offset + dst >= len(self.memory): self.resize_memory(self.offset + dst) self.memory[self.offset + dst] = value elif mode == mode_immediate: raise Exception(f"cannot write {value} to literal {dst}") def uop_cond_jump(self, modes, cond): param_mode = self.try_pop_mode(modes) param_raw = int(self.memory[self.pc + 1]) param = self.uop_read(param_raw, param_mode) dest_mode = self.try_pop_mode(modes) dest_raw = int(self.memory[self.pc + 2]) dest = self.uop_read(dest_raw, dest_mode) if cond(param): return dest return self.pc + 3 def uop_cmp(self, modes, cmp): param0_mode = self.try_pop_mode(modes) param0_raw = int(self.memory[self.pc + 1]) param0 = self.uop_read(param0_raw, param0_mode) param1_mode = self.try_pop_mode(modes) param1_raw = int(self.memory[self.pc + 2]) param1 = self.uop_read(param1_raw, param1_mode) dest_mode = self.try_pop_mode(modes) dest = int(self.memory[self.pc + 3]) if cmp(param0, param1): self.uop_write(dest, 1, dest_mode) else: self.uop_write(dest, 0, dest_mode) return self.pc + 4 #-OPCODES----------------------------- def op_add(self, modes): arg0_mode = self.try_pop_mode(modes) arg1_mode = self.try_pop_mode(modes) dest_mode = self.try_pop_mode(modes) arg0_raw = int(self.memory[self.pc + 1]) arg1_raw = int(self.memory[self.pc + 2]) dest = int(self.memory[self.pc + 3]) arg0 = self.uop_read(arg0_raw, arg0_mode) arg1 = self.uop_read(arg1_raw, arg1_mode) self.uop_write(dest, str(int(arg0) + int(arg1)), dest_mode) return self.pc + 4 def op_mul(self, modes): arg0_mode = self.try_pop_mode(modes) arg1_mode = self.try_pop_mode(modes) dest_mode = self.try_pop_mode(modes) arg0_raw = int(self.memory[self.pc + 1]) arg1_raw = int(self.memory[self.pc + 2]) dest = int(self.memory[self.pc + 3]) arg0 = self.uop_read(arg0_raw, arg0_mode) arg1 = self.uop_read(arg1_raw, arg1_mode) self.uop_write(dest, str(int(arg0) * int(arg1)), dest_mode) return self.pc + 4 def op_read(self, modes): dest_mode = self.try_pop_mode(modes) dest = int(self.memory[self.pc + 1]) # if the input buffer is empty, we should "stall" and # resume later if not self.input_buffer: self.stalled = True return self.pc val = self.input_buffer.pop() self.uop_write(dest, str(val), dest_mode) return self.pc + 2 def op_write(self, modes): src_mode = self.try_pop_mode(modes) src_raw = int(self.memory[self.pc + 1]) src = self.uop_read(src_raw, src_mode) self.output_buffer.append(src) return self.pc + 2 def op_jump_true(self, modes): return self.uop_cond_jump(modes, lambda x: x != 0) def op_jump_false(self, modes): return self.uop_cond_jump(modes, lambda x: x == 0) def op_lt(self, modes): return self.uop_cmp(modes, lambda x, y: x < y) def op_eq(self, modes): return self.uop_cmp(modes, lambda x, y: x == y) def op_rebase(self, modes): param_mode = self.try_pop_mode(modes) param_raw = int(self.memory[self.pc + 1]) param = self.uop_read(param_raw, param_mode) self.offset += param return self.pc + 2
raw_code = open("puzzle_input/day21.txt", "r").read() code = raw_code.split(",") def preprocess_ascii_input(instructions): int_instructions = [ ord(c) for c in instructions ] return int_instructions + [ ord("\n") ] def skip_line(line): return len(line) == 0 or line[0] == "#" def run_script(script): output_buffer = [] cpu = IntCodeCpu(code) script_lines = [ preprocess_ascii_input(script_line) for script_line in script.split("\n") if not skip_line(script_line.strip()) ] from pprint import pprint output = [] for i, script_line in enumerate(script_lines): print(i, script_line) cpu.start(script_line[::-1], output_buffer) maybe_return_value = output_buffer[-1] if (maybe_return_value >= 0 and maybe_return_value < 256): # the output is printable ascii meaning that we # have hit a snag - we should print the output # to see the last dying moments of our dear # springbot output = "".join([ chr(c) for c in output_buffer ]) print(output) else: print("retval = ", maybe_return_value)
# part 1 # reached via some very simple heuristics - if there is # an gap upcoming just before jump target (D) we should jump: # # @ # #??.# # ABCD # # and if there's a gap immediately in front of us, we should jump # # @ # #.??? # ABCD # # otherwise, we'll walk script_part_1 = """ # if there's a gap *just* before jump target, jump NOT C T AND D T OR T J # if there's a gap right in front of us, jump NOT A T OR T J # fingers crossed WALK""" run_script(script_part_1)
0 [78, 79, 84, 32, 67, 32, 84, 10] 1 [65, 78, 68, 32, 68, 32, 84, 10] 2 [79, 82, 32, 84, 32, 74, 10] 3 [78, 79, 84, 32, 65, 32, 84, 10] 4 [79, 82, 32, 84, 32, 74, 10] 5 [87, 65, 76, 75, 10] retval = 19354392
# part 2 # # more tricky, this time we need to be more careful about our # fallback of "otherwise, we'll walk" # # ......@.......... # #####.##.##..#### # ABCDEFGH # # here the existing program believes we can go ahead - but we # end up being forced to jump. we need to jump before this but # how do we decide this? a naive guess would be "if there's yet # another gap upcoming whose last tile is F then jump" script_part_2 = """ # if there's a gap just before jump target AND # we can continue jumping if we need, then jump NOT C J AND D J AND H J # however make sure NOT to walk a step when # being forced to jump would land us in gap NOT B T AND D T OR T J # if there's a gap right in front of us, jump NOT A T OR T J # fingers crossed RUN """ run_script(script_part_2)
0 [78, 79, 84, 32, 67, 32, 74, 10] 1 [65, 78, 68, 32, 68, 32, 74, 32, 10] 2 [65, 78, 68, 32, 72, 32, 74, 10] 3 [78, 79, 84, 32, 66, 32, 84, 32, 10] 4 [65, 78, 68, 32, 68, 32, 84, 32, 10] 5 [79, 82, 32, 84, 32, 74, 10] 6 [78, 79, 84, 32, 65, 32, 84, 32, 10] 7 [79, 82, 32, 84, 32, 74, 10] 8 [82, 85, 78, 10] retval = 1139528802