2019-12-15 - Oxygen System
(original .ipynb)
Day 15 puzzle input is an IntCode program (mine is here) which controls a droid that should perform some repairs on an oxygen tank. Part 1 involves using the program to explore the surroundings (it's basically a maze), find a destination (an oxygen tank) then find the shortest path to that location. Part 2 involves exploring the maze, then simulating the spread of oxygen through the maze and finding how many time-steps it would take to fill every spot of the maze.
opcode_add = 1 opcode_mul = 2 opcode_read = 3 opcode_write = 4 opcode_jump_true = 5 opcode_jump_false = 6 opcode_lt = 7 opcode_eq = 8 opcode_rebase = 9 opcode_terminate = 99 mode_position = 0 mode_immediate = 1 mode_relative = 2 class IntCodeCpu: def __init__(self, memory_image): self.memory = [ x for x in memory_image ] # copy memory image, in case it's reused self.stalled = True self.input_buffer = None self.output_buffer = None self.pc = 0 self.initialise_opcodes() self.offset = 0 self.done = False def start(self, input_buffer, output_buffer, noun=None, verb=None): self.input_buffer = input_buffer self.output_buffer = output_buffer if noun: self.memory[1] = noun if verb: self.memory[2] = verb return self.run() def run(self): instr = self.memory[self.pc] self.stalled = False while int(instr) != opcode_terminate and not self.stalled: (op, modes) = self.decode_instr(instr) self.pc = op(modes) instr = self.memory[self.pc] return self.memory[0] #-HELPERS----------------------------- def try_pop_mode(self, modes): if len(modes) == 0: return 0 return modes.pop() def resize_memory(self, target_addr): self.memory += ([0] * (1 + target_addr - len(self.memory))) #-DECODE-INSTRUCTIONS----------------- def initialise_opcodes(self): self.opcodes = { opcode_add: self.op_add, opcode_mul: self.op_mul, opcode_read: self.op_read, opcode_write: self.op_write, opcode_jump_true: self.op_jump_true, opcode_jump_false: self.op_jump_false, opcode_lt: self.op_lt, opcode_eq: self.op_eq, opcode_rebase: self.op_rebase } def decode_instr(self, instr): instr = str(instr) opcode = self.decode_op(instr) modes = self.decode_modes(instr) if not (opcode in self.opcodes): raise Exception(f"Invalid opcode {opcode}") return (self.opcodes[opcode], modes) def decode_op(self, instr): if len(instr) > 2: return int(instr[-2:]) return int(instr) def decode_modes(self, instr): if len(instr) > 2: return [ int(d) for d in instr[:-2]] return [] #-MICRO-OPS--------------------------- def uop_read(self, value, mode): if mode == mode_position: if value >= len(self.memory): self.resize_memory(value) return int(self.memory[value]) elif mode == mode_relative: if self.offset + value >= len(self.memory): self.resize_memory(self.offset + value) return int(self.memory[self.offset + value]) elif mode == mode_immediate: return int(value) else: raise Exception("UNKNOWN MODE") def uop_write(self, dst, value, mode): if mode == mode_position: if dst >= len(self.memory): self.resize_memory(dst) self.memory[dst] = value elif mode == mode_relative: if self.offset + dst >= len(self.memory): self.resize_memory(self.offset + dst) self.memory[self.offset + dst] = value elif mode == mode_immediate: raise Exception(f"cannot write {value} to literal {dst}") def uop_cond_jump(self, modes, cond): param_mode = self.try_pop_mode(modes) param_raw = int(self.memory[self.pc + 1]) param = self.uop_read(param_raw, param_mode) dest_mode = self.try_pop_mode(modes) dest_raw = int(self.memory[self.pc + 2]) dest = self.uop_read(dest_raw, dest_mode) if cond(param): return dest return self.pc + 3 def uop_cmp(self, modes, cmp): param0_mode = self.try_pop_mode(modes) param0_raw = int(self.memory[self.pc + 1]) param0 = self.uop_read(param0_raw, param0_mode) param1_mode = self.try_pop_mode(modes) param1_raw = int(self.memory[self.pc + 2]) param1 = self.uop_read(param1_raw, param1_mode) dest_mode = self.try_pop_mode(modes) dest = int(self.memory[self.pc + 3]) if cmp(param0, param1): self.uop_write(dest, 1, dest_mode) else: self.uop_write(dest, 0, dest_mode) return self.pc + 4 #-OPCODES----------------------------- def op_add(self, modes): arg0_mode = self.try_pop_mode(modes) arg1_mode = self.try_pop_mode(modes) dest_mode = self.try_pop_mode(modes) arg0_raw = int(self.memory[self.pc + 1]) arg1_raw = int(self.memory[self.pc + 2]) dest = int(self.memory[self.pc + 3]) arg0 = self.uop_read(arg0_raw, arg0_mode) arg1 = self.uop_read(arg1_raw, arg1_mode) self.uop_write(dest, str(int(arg0) + int(arg1)), dest_mode) return self.pc + 4 def op_mul(self, modes): arg0_mode = self.try_pop_mode(modes) arg1_mode = self.try_pop_mode(modes) dest_mode = self.try_pop_mode(modes) arg0_raw = int(self.memory[self.pc + 1]) arg1_raw = int(self.memory[self.pc + 2]) dest = int(self.memory[self.pc + 3]) arg0 = self.uop_read(arg0_raw, arg0_mode) arg1 = self.uop_read(arg1_raw, arg1_mode) self.uop_write(dest, str(int(arg0) * int(arg1)), dest_mode) return self.pc + 4 def op_read(self, modes): dest_mode = self.try_pop_mode(modes) dest = int(self.memory[self.pc + 1]) # if the input buffer is empty, we should "stall" and # resume later if not self.input_buffer: self.stalled = True return self.pc val = self.input_buffer.pop() self.uop_write(dest, str(val), dest_mode) return self.pc + 2 def op_write(self, modes): src_mode = self.try_pop_mode(modes) src_raw = int(self.memory[self.pc + 1]) src = self.uop_read(src_raw, src_mode) self.output_buffer.append(src) return self.pc + 2 def op_jump_true(self, modes): return self.uop_cond_jump(modes, lambda x: x != 0) def op_jump_false(self, modes): return self.uop_cond_jump(modes, lambda x: x == 0) def op_lt(self, modes): return self.uop_cmp(modes, lambda x, y: x < y) def op_eq(self, modes): return self.uop_cmp(modes, lambda x, y: x == y) def op_rebase(self, modes): param_mode = self.try_pop_mode(modes) param_raw = int(self.memory[self.pc + 1]) param = self.uop_read(param_raw, param_mode) self.offset += param return self.pc + 2
from PIL import Image, ImageDraw from IPython.display import Image as IPythonImage from IPython.display import display code = open("puzzle_input/day15.txt", "r").read().strip().split(",") direction_north = 1 direction_south = 2 direction_west = 3 direction_east = 4 reverse_direction = { direction_north: direction_south, direction_south: direction_north, direction_west: direction_east, direction_east: direction_west } def backwards(movement_stack): return [ reverse_direction[movement] for movement in movement_stack ] result_fail = 0 result_ok = 1 result_completed = 2 def neighbours(position, movement_stack): x, y = position return [ ((x, y+1), movement_stack + [ direction_north ]), ((x, y-1), movement_stack + [ direction_south ]), ((x+1, y), movement_stack + [ direction_west ]), ((x-1, y), movement_stack + [ direction_east ]), ] def create_image(open_points, wall_points, filename): if not filename: return min_x = min([ x for x,y in open_points + wall_points ] + [0]) min_y = min([ y for x,y in open_points + wall_points ] + [0]) max_x = max([ x for x,y in open_points + wall_points ] + [100]) max_y = max([ y for x,y in open_points + wall_points ] + [100]) offset_x = -(min_x) offset_y = -(min_y) img = Image.new("RGB", (max_x + offset_x, max_y + offset_y), "black") draw = ImageDraw.Draw(img) draw.point([ (x + offset_x, y + offset_y) for x,y in open_points], fill="white") draw.point([ (x + offset_x, y + offset_y) for x,y in wall_points], fill="red") img.save(filename) def check_contents_after_moves(code, movement_stack): cpu = IntCodeCpu(code) output_buffer = [] input_buffer = [ m for m in movement_stack ][::-1] cpu.start(input_buffer, output_buffer) return int(cpu.output_buffer[-1]) def solve_maze(filename): queue = neighbours([0, 0], []) visited = set([(0, 0)]) # this is just to create the pretty picture at the end open_points = [(0,0)] wall_points = [] while queue: position, movement_stack = queue.pop(0) if position in visited: continue visited.add(position) res = check_contents_after_moves(code, movement_stack) if res == result_completed: create_image(open_points, wall_points, filename) return movement_stack if res == result_fail: wall_points.append(position) if res == result_ok: open_points.append(position) queue.extend([ (p,s) for p,s in neighbours(position, movement_stack) if not (p in visited)]) raise Exception("No route to the stupid oxygen tank") filename = "./img/day15-part1.png" print(len(solve_maze(filename))) display(IPythonImage(url=filename))
226
def check_contents_after_moves_2(code, movement_stack, initialisation): cpu = IntCodeCpu(code) output_buffer = [] input_buffer = [ m for m in initialisation + movement_stack ][::-1] cpu.start(input_buffer, output_buffer) return int(cpu.output_buffer[-1]) def flood_maze(filename, input_instructions): queue = [ neighbours([0, 0], []) ] visited = set([(0, 0)]) # this is just to create the pretty picture at the end open_points = [(0,0)] wall_points = [] minutes = 0 while queue: minutes += 1 locations_group = queue.pop(0) to_add_to_queue = [] for position, movement_stack in locations_group: if position in visited: continue visited.add(position) res = check_contents_after_moves_2(code, movement_stack, input_instructions) if res == result_fail: wall_points.append(position) if res == result_ok: open_points.append(position) to_add_to_queue.extend([ (p,s) for p,s in neighbours(position, movement_stack) if not (p in visited)]) if to_add_to_queue: queue.append(to_add_to_queue) create_image(open_points, wall_points, filename) return minutes filename = "./img/day15-part2.png" path_to_oxygen = solve_maze(None) print(flood_maze(filename, path_to_oxygen)) display(IPythonImage(url=filename))
342