2019-12-14 - Space Stoichiometry
(original .ipynb)
Day 14 puzzle input is a set of sequences (mine is here) like "10 ORE => 10A
", which would mean "You can produce 10 of resource 'A' using 10 of the'ORE' resource". Part 1 involves using these reactions to determine the minimum amount of ORE required to produce 1 "FUEL". Part 2 involves going the other way - finding how much FUEL you can produce with 1 trillion ORE.
quantity_idx = 0 component_idx = 1 class ReactionResult: def __init__(self, quantity_produced, required): self.quantity_produced = quantity_produced self.required = required def __repr__(self): if not self.required: return str(self.quantity_produced) return f"{self.quantity_produced} <= (" + ", ".join([f"{qty}x{comp}" for qty,comp in self.required]) + ")" def parse_component(component_str): quantity_str, component_str = component_str.strip().split(" ") return (int(quantity_str), component_str) def parse_reactions(reactions_list_str): reactions = { "ORE": ReactionResult(1, None) } for reaction_str in reactions_list_str: components_str, result_str = reaction_str.split("=>") result_amount, result_component = parse_component(result_str) components = [ parse_component(component_str) for component_str in components_str.split(",") ] reactions[result_component] = ReactionResult(result_amount, components) return reactions def ore_for_component(reactions, quantity, component, spares, level=0, debug=False): if component in spares: # if the amount required or more is spare we don't need any more reactions # so just update the structure and return 0 if spares[component] >= quantity: spares[component] -= quantity return 0 # if we have less spare, than is required, then just subtract the # spare amount from the quantity required and continue with the lesser # quantity elif spares[component] < quantity: quantity -= spares[component] spares[component] = 0 if component not in reactions: raise Exception(f"Unknown component {component}") reaction = reactions[component] reaction_count = int(quantity / reaction.quantity_produced) if (reaction_count * reaction.quantity_produced) < quantity: reaction_count += 1 # if we'll produce more than we need, add some to the spares registry if reaction_count * reaction.quantity_produced > quantity: spare_quantity = (reaction_count * reaction.quantity_produced) - quantity if component in spares: spares[component] += spare_quantity else: spares[component] = spare_quantity if debug: left_padding = "".join(level * ["\t"]) print(f"{left_padding}{quantity} x {component}") # we have a raw material which requires no reactions, so just return # the quantity that was requested if not reaction.required: return quantity total_ore = 0 for required_quantity, required_component in reaction.required: total_ore += ore_for_component(reactions, reaction_count * required_quantity, required_component, spares, 1 + level, debug) return total_ore test_reactions0 = [ "10 ORE => 10 A", "1 ORE => 1 B", "7 A, 1 B => 1 C", "7 A, 1 C => 1 D", "7 A, 1 D => 1 E", "7 A, 1 E => 1 FUEL" ] test_reactions1 = [ "9 ORE => 2 A", "8 ORE => 3 B", "7 ORE => 5 C", "3 A, 4 B => 1 AB", "5 B, 7 C => 1 BC", "4 C, 1 A => 1 CA", "2 AB, 3 BC, 4 CA => 1 FUEL" ] test_reactions2 = [ "157 ORE => 5 NZVS", "165 ORE => 6 DCFZ", "44 XJWVT, 5 KHKGT, 1 QDVJ, 29 NZVS, 9 GPVTF, 48 HKGWZ => 1 FUEL", "12 HKGWZ, 1 GPVTF, 8 PSHF => 9 QDVJ", "179 ORE => 7 PSHF", "177 ORE => 5 HKGWZ", "7 DCFZ, 7 PSHF => 2 XJWVT", "165 ORE => 2 GPVTF", "3 DCFZ, 7 NZVS, 5 HKGWZ, 10 PSHF => 8 KHKGT" ] test_reactions3 = [ "2 VPVL, 7 FWMGM, 2 CXFTF, 11 MNCFX => 1 STKFG", "17 NVRVD, 3 JNWZP => 8 VPVL", "53 STKFG, 6 MNCFX, 46 VJHF, 81 HVMC, 68 CXFTF, 25 GNMV => 1 FUEL", "22 VJHF, 37 MNCFX => 5 FWMGM", "139 ORE => 4 NVRVD", "144 ORE => 7 JNWZP", "5 MNCFX, 7 RFSQX, 2 FWMGM, 2 VPVL, 19 CXFTF => 3 HVMC", "5 VJHF, 7 MNCFX, 9 VPVL, 37 CXFTF => 6 GNMV", "145 ORE => 6 MNCFX", "1 NVRVD => 8 CXFTF", "1 VJHF, 6 MNCFX => 4 RFSQX", "176 ORE => 6 VJHF", ] test_reactions4 = [ "171 ORE => 8 CNZTR", "7 ZLQW, 3 BMBT, 9 XCVML, 26 XMNCP, 1 WPTQ, 2 MZWV, 1 RJRHP => 4 PLWSL", "114 ORE => 4 BHXH", "14 VRPVC => 6 BMBT", "6 BHXH, 18 KTJDG, 12 WPTQ, 7 PLWSL, 31 FHTLT, 37 ZDVW => 1 FUEL", "6 WPTQ, 2 BMBT, 8 ZLQW, 18 KTJDG, 1 XMNCP, 6 MZWV, 1 RJRHP => 6 FHTLT", "15 XDBXC, 2 LTCX, 1 VRPVC => 6 ZLQW", "13 WPTQ, 10 LTCX, 3 RJRHP, 14 XMNCP, 2 MZWV, 1 ZLQW => 1 ZDVW", "5 BMBT => 4 WPTQ", "189 ORE => 9 KTJDG", "1 MZWV, 17 XDBXC, 3 XCVML => 2 XMNCP", "12 VRPVC, 27 CNZTR => 2 XDBXC", "15 KTJDG, 12 BHXH => 5 XCVML", "3 BHXH, 2 VRPVC => 7 MZWV", "121 ORE => 7 VRPVC", "7 XCVML => 6 RJRHP", "5 BHXH, 4 VRPVC => 5 LTCX" ] assert 31 == ore_for_component(parse_reactions(test_reactions0), 1, "FUEL", {}) assert 165 == ore_for_component(parse_reactions(test_reactions1), 1, "FUEL", {}) assert 13312 == ore_for_component(parse_reactions(test_reactions2), 1, "FUEL", {}) assert 180697 == ore_for_component(parse_reactions(test_reactions3), 1, "FUEL", {}) assert 2210736 == ore_for_component(parse_reactions(test_reactions4), 1, "FUEL", {}) puzzle_reactions = [ l.strip() for l in open("puzzle_input/day14.txt", "r").readlines() ] print(ore_for_component(parse_reactions(puzzle_reactions), 1, "FUEL", {}))
374457
one_trillion = 1_000_000_000_000 # yes we are going to brute force this one too, thankyouverymuch def find_a_trillion_ore(increment, reactions_table, ore_target): current_guess = increment ore_required = ore_for_component(parse_reactions(reactions_table), current_guess, "FUEL", {}, 0, False) previous_guess = one_trillion - ore_required while ore_required != ore_target: if ore_required > ore_target: # if we overshot it then go back, step down the increment a bit and try again current_guess -= increment increment = int(increment / 2) else: # it's late and this is 99/100 gonna be the answer so it'll have to do if previous_guess == current_guess and increment == 1: break current_guess += increment ore_required = ore_for_component(parse_reactions(reactions_table), current_guess, "FUEL", {}, 0, False) difference = one_trillion - ore_required previous_guess = current_guess return current_guess # assert 82892753 == find_a_trillion_ore(65536, test_reactions2, one_trillion) assert 5586022 == find_a_trillion_ore(65536, test_reactions3, one_trillion) assert 460664 == find_a_trillion_ore(65536, test_reactions4, one_trillion) print(find_a_trillion_ore(65536, puzzle_reactions, one_trillion))
3568888